

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Phase Dependence of the IR Spectra of Nitrobenzene

R. Ernesto Clavijo-campos^a; Boris Weiss-López^a

^a Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile

To cite this Article Clavijo-campos, R. Ernesto and Weiss-López, Boris(1990) 'Phase Dependence of the IR Spectra of Nitrobenzene', *Spectroscopy Letters*, 23: 1, 137 — 145

To link to this Article: DOI: 10.1080/00387019008054041

URL: <http://dx.doi.org/10.1080/00387019008054041>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

PHASE DEPENDENCE OF THE IR SPECTRA OF NITROBENZENE

R. Ernesto Clavijo-Campos and Boris Weiss-López

Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile

Abstract

The IR spectra of nitrobenzene-*d*₆ and -*d*₅ were recorded in gas and liquid phases at 25° C and in amorphous solid phase at -170°C. The appearance of new bands and intensity changes going from liquid to solid phase spectrum, are interpreted in terms of molecular symmetry modifications. A normal coordinates analysis was performed and the potential energy distribution agrees well with previous assignments.

Introduction

A significant amount of work have been done on the vibrational analysis of monosubstituted benzene derivatives (1). Among these, nitrobenzene and its isotopomers have received special attention (2-6). Since the pionnering work of Randle and Whiffen (2), which concerned just the stretching of the nitro group, the understanding about the normal modes of vibrations of this kind of structure has increased enormously. Even though the most recent works proposed a complete assignment of the experimental frequencies, some of them were tentatively assigned

(5,6). Despite this fact, no attention has been paid to the IR spectrum of nitrobenzene in amorphous solid phase.

In the present work we have reexamined the IR spectrum of nitrobenzene and its perdeutero derivative in the gas and liquid phases, and obtained for the first time the amorphous solid spectrum. Interesting experimental observations, particularly comparing the liquid and amorphous solid spectra, are interpreted as a consequence of lowering the molecular symmetry point group of nitrobenzene. We performed a normal coordinates calculation that reproduces the experimental frequencies of nitrobenzene-d₆ and -d₅. With the generated force field we have also calculated the frequencies of nitrobenzene-p-d₁.

Experimental Section

Nitrobenzene-d₆ and -d₅ were obtained from commercial sources (Aldrich and Stholer respectively) at the highest purity available (99 + % and 99.5 % respectively) and used without further purification. Spectra were obtained using a Perkin Elmer 621 IR spectrophotometer and the frequencies measured with an uncertainty of ± 2 cm⁻¹. Amorphous solid spectra were recorded from 600 to 4000 cm⁻¹ at liquid air temperature, immediately after freezing the sample in a vacuum cell designed for this purpose. Liquid phase spectra were recorded at room temperature using thin films. Gaseous samples, also measured at room temperature, were prepared in standard 10 cm gaseous sample cells.

The normal coordinates calculations were performed on a microcomputer Zenith Z-200 equipped with a 80287 co-processor, using a set of programs some transferred from mainframe computers.

Results and Discussion

Nitrobenzene is a planar molecule that belongs to the C_{2v} point symmetry group. It has 14 atoms and 36 fundamental frequencies, which are distributed as follows: 13 A_1 , 4 A_2 , 7 B_1 and 12 B_2 . Previous assignments, some aided with Raman polarization measurements, to the different irreducible representations have been already proposed (5,6).

Fig. 1 shows the IR spectrum of nitrobenzene in liquid and amorphous solid phases from 600 to 1700 cm^{-1} . An inspection to this figure reveals drastic changes in the relative intensities of some of the bands between both spectra. A more careful analysis shows that, in many cases, the relative intensity of the totally symmetric A_1 -vibrations increase going from the liquid to the amorphous solid spectrum. On the other hand, some of the totally asymmetric B_2 -vibrations decrease considerably in relative intensity. Perhaps the most interesting experimental observation is the appearance of two new bands in the frozen sample spectrum, at 965 and 830 cm^{-1} , which were not present in the liquid spectrum. Also from fig. 1 can be observed that a number of low intensity new bands appeared in the amorphous solid. These are attributed to overtone and combination bands.

The present experimental observations can be understood in terms of a decrease in the molecular symmetry of nitrobenzene. The average molecular geometry, in gas or liquid phase, more likely correspond to a planar C_{2v} structure. With this geometry, the totally symmetric A_1 vibrations do not contribute significantly to change the molecular dipole moment, however the totally asymmetric B_2 vibrations have a more important contribution. In the amorphous solid the molecule is not planar, the nitro group remains out of the aromatic ring plane and the

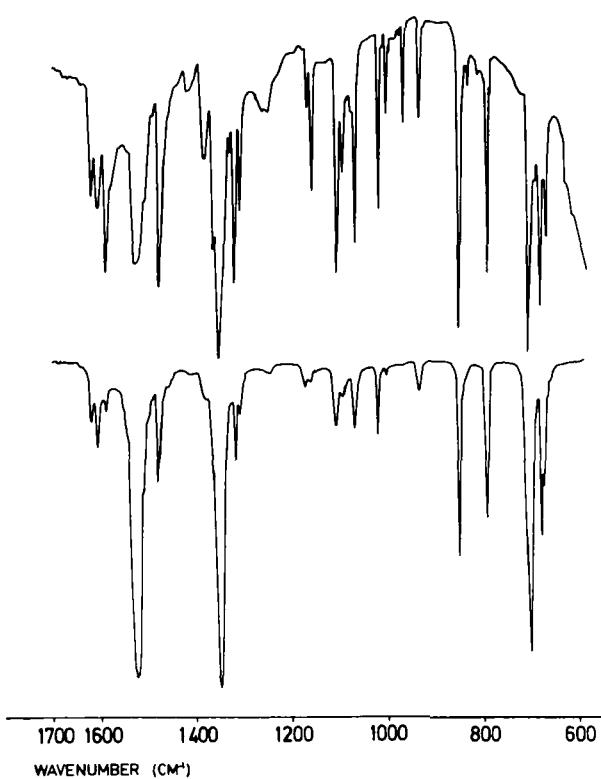


Fig. 1 Infrared spectra of nitrobenzene-d₆ in amorphous solid phase (top spectrum) and liquid phase (bottom spectrum)

molecule now belongs to the C₂ point symmetry group. In this conformation, the contribution from the totally symmetric vibrations to change the molecular dipole moment become more important, and the contribution from the asymmetric ones is not as important as before. This phenomenon is well illustrated by the bands at 1588 and 1525 cm⁻¹, which belong to the A₁ and B₂ representations respectively. The band at 1588 cm⁻¹, according to previous assignments and our potential energy distribution

TABLE 1

Observed and calculated frequencies of nitrobenzene-*do* and calculated potential energy distribution (PED). Symbols: st = stretching; bn = bending, op = out of plane bending; tr = torsion.

	Obs Freq (cm ⁻¹)	Calc. Freq. (cm ⁻¹)	PED (%)*
A ₁	3118	3120	CH st(100)
	3085	3086	CH st(100)
	3035	3045	CH st(100)
	1588	1591	CC st(46),CCH bn(20),CCC bn(12)
	1478	1487	CC st(29),CN st(29),CCH bn(18)
	1348	1356	NO ₂ st(37),CN st(18),CCH bn(13)
	1158	1163	CCH bn(61),CC st(31),CCH bn(16)
	1108	1112	CCH bn(63),CC st(11)
	1092	1095	CCC bn(42),NO ₂ st(24)
	1004	1006	CC st(57),CCC bn(40)
	852	854	NO ₂ st(25) bn(24),CC st(24)
	682	675	CCC bn(40),NO ₂ bn(35),CC st(20)
	395	395	CCC bn(68),CN st(21)
A ₂	965	969	CH op(100)
	830	819	CH op(100)
	394	398	CCCC tr(80),CH op(11)
	70(*)	69	NO ₂ tr(76),CCCC tr(22)
B ₁	1018	1014	CH op(78),CCCC tr(13)
	935	932	CH op(52),CCCC tr(21),NO ₂ tr(18)
	792	789	CH op(45),CCCC tr(44)
	706	703	NO ₂ op(45),NO ₂ tr(25),CCCC tr(16)
	672	670	CCCC tr(62),NO ₂ op(25)
	420	436	CH op(37),CCCC tr(29),NO ₂ tr(25)
	176(*)	185	NO ₂ tr(37),CCCC tr(23),CH op(20)
B ₂	3118	3119	CH st(100)
	3085	3089	CH st(100)
	1608	1618	CC st(35),CCH bn(23)
	1525	1535	NO ₂ st(30),CC st(30),CNO bn(16)
	1384	1373	CC st(65),CCH bn(15)
	1318	1326	NO ₂ st(40),CC st(40)
	1308	1315	CCH bn(82)
	1168	1170	CCH bn(87)
	1088	1074	CCH bn(68),CC st(15)
	615	615	CNO bn(52)
	530	535	CCC bn(59),CC st(20)
	254(*)	253	CCN bn(54),CNO bn(28)

(*) Frequencies taken from ref. (8)

Contributions smaller than 10% are not included

calculation (PED, see Table 1), corresponds to one of the in plane C=C stretching vibrations. In the planar average structure, the contribution from this motion to change the molecular dipole moment is small. After freezing the sample this contribution become more important, since the aromatic ring and the nitro group are not in the same plane. Consequently the relative intensity of this band increases going from the liquid to the solid spectrum. The band at 1525 cm^{-1} belongs to the totally asymmetric B_2 -representation and according to previous assignments and our PED calculation, corresponds to the asymmetric NO_2 stretching vibration. In the planar configuration the contribution from this mode to change the molecular dipole moment is important and the band is intense. However, in the solid state this contribution become less important and consequently the intensity of the band decreases. The appearance of two new bands in the solid at 968 and 830 cm^{-1} , can also be explained on the same basis. Under the C_{2v} point group the A_2 modes are IR inactives, by lowering the symmetry to C_2 they become IR active modes. Unfortunately, we were not able to record the amorphous solid spectrum below 600 cm^{-1} and could not detect the remaining A_2 band, at 393 cm^{-1} in the Raman Spectrum (5).

We have performed a force field calculation using a self-consistent iterative procedure based on Wilson's GF-matrix method (8). In order to calculate the molecular force field the user must provide vibrational frequencies of the molecule and one isotopic derivative. More details about the iterative procedure can be found in the literature (9,10). The final transferable force field is obtained from the average of the force fields generated for the molecule and the isotopomer.

TABLE 2

Observed and calculated frequencies of nitrobenzene-d₅ and -d₁. Experimental frequencies of nitrobenzene-p-d₁ were taken from ref. (6).

C ₆ D ₅ -NO ₂		C ₆ H ₄ D-p-NO ₂		
Obs Freq (cm ⁻¹)	Calc Freq (cm ⁻¹)	Obs Freq (cm ⁻¹)	Calc Freq (cm ⁻¹)	
A ₁	2318 2290 2278 1540 1465 1340 1075 960 870 842 809 652 395	2317 2289 2271 1537 1457 1332 1072 958 868 839 807 659 385	A ₁ 3077 3077 2300 1586 1471 1345 1175 1108 1018 987 851 676 393	3055 3052 2286 1587 1485 1356 1160 1111 1095 987 853 668 392
A ₂	786 630 353 66(*)	782 638 350 67	A ₂ * 965 830 394 70	969 819 398 69
B ₁	842 840 718 615 542 390 166(*)	845 838 721 617 544 377 159	B ₁ 966 878 761 690 606 421 170	1014 932 789 703 689 436 184
B ₂	2305 2290 1589 1518 1358 1305 1040 852 812 590 508 242(*)	2304 2287 1579 1509 1350 1297 1035 851 807 590 504 243	B ₂ 3077 3077 1604 1521 1416 1316 1300 1108 878 608 528 -	3119 3088 1590 1517 1370 1326 1239 1093 918 611 534 252

(*) Frequencies from ref. (6)

(#) The same frequencies that nitrobenzene-d₆ are assumed

A set of suitable symmetry coordinates for nitrobenzene were constructed and the iterative process mentioned before was carried out on nitrobenzene-*do* and -*ds*. For the purpose of the calculation we adopted a planar structure with the following geometrical parameters: $r_{CC} = 139.7$ pm, $r_{CN} = 148.6$ pm, $r_{CH} = 108.4$ pm, $r_{NO} = 120.8$ pm (7), and all the Euler angles were considered ideal, 120° . The calculated and experimental frequencies as well as the potential energy distribution are shown in Table 1. An examination of the PED on this table reveals a close agreement between previous assignments and the calculated character of the modes, even though these are considerably mixed. Table 2 shows the calculated and experimental frequencies of nitrobenzene-*ds*, and the predicted frequencies of nitrobenzene-*di* together with the experimental values from reference (5). The frequencies of nitrobenzene-*do* and *ds* are reproduced with 0.8% average deviation, however the predicted values for nitrobenzene-*p-d* reflect a much larger error (2.4% average deviation). This difference could arise from discrepancies on the assignments of the experimental frequencies.

Finally, we would like to emphasize the fact that, in some instances, more information about molecular structure can be obtained by comparison of IR spectra of liquid and amorphous solid phases.

Acknowledgements

The authors would like to acknowledge support from DTI, Universidad de Chile, through Grant 02815/8812.

References

1. G. Varsanyi, "Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives", Adam Hilger, London, 1974.
2. R.R. Randle and D.H. Whiffen, J. Chem. Soc., 4153 (1952).
3. J.H.S. Green, W. Kynaston and A.S. Lindsey, Spectrochim. Acta, 17, 486 (1961).
4. C.V. Stephenson, W.C. Coburn and W.S. Wilcox, Spectrochim. Acta 17, 933 (1961).
5. A. Kuwae and K. Machida, Spectr chim. Acta, 35A, 27 (1979).
6. J.D. Laposa, Spectrochim. Acta, 35A, 65 (1979).
7. J. Trotter, Acta Crystall., 12, 884 (1959).
8. E.B. Wilson, J.C. Decius and P.C. Cross, "Molecular Vibrations", McGraw-Hill, New York, 1955.
9. R. Aroca, E.A. Robinson, Yu. N. Pachenko and V.I. Pupyshev, Chem. Phys. Lett., 43, 387 (1976).
10. Yu. N. Pachenko, R. Aroca, N.F. Stepanov and G.S. Koptev, J. Mol. Struct., 12, 289 (1972).

Date Received: 09/14/89
Date Accepted: 10/12/89